

Clean C#
Readable, Maintainable, Pleasurable C#

Jason Roberts

This book is for sale at http://leanpub.com/cleancsharp

This version was published on 2020-02-07

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2020 Jason Roberts

http://leanpub.com/cleancsharp
http://leanpub.com/
http://leanpub.com/manifesto

To all those giants of Software Engineering who have gone before and on whose
shoulders we all now stand.

Contents

About The Author . 2
Other Leanpub Books by Jason Roberts . 2

Keeping Software Soft . 2
C# Tips . 2

Pluralsight Courses . 3

About this Book . 4

Introduction . 5
What is Clean C#? . 5
Why Clean C#? . 5
Using this Book . 6

Code Samples . 6
Order . 6
Prescriptive . 6

Clean C# is a Spectrum . 7

Comments . 8
Repeating What the Code Already Says . 8
Change Control Comments . 10
Comments as a Substitute for Self Documenting Code 10
Commented-Out Code . 11
Pointless XML Documentation Comments 12
Acceptable Use of Comments . 14

Naming Things . 15
Qualities of Clean Names . 15

Expressive . 15

CONTENTS

Accurate . 16
Suitable Length . 16
Pronounceable Names . 20

Naming Specific Items . 21
Namespaces . 21
Interfaces . 22
Classes . 22
Methods . 23
Properties . 23
Events . 23
Fields . 24
Attributes . 24
Method Parameters . 24
Variables . 24
Booleans . 25
Generic Types Parameters . 27
Enums . 27

Some General Rules . 27

Methods . 28
Method Size and Clarity . 28
Cohesive Methods . 29
Mixing Abstraction Levels . 32
Action or Answering Methods . 32
Method Parameters . 34

Methods with Zero Parameters . 35
Methods with One Parameter . 35
Methods with Two Parameters . 35
Methods with Three Parameters . 36
Methods with More Than Three Parameters 36
Refactoring to Reduce the Number of Parameters 36
Params . 37
Output Parameters . 37
Named Arguments . 38
Boolean Switching Arguments . 38

Multiple Returns . 40

CONTENTS

Code Duplication in Methods . 42
Methods with Side Effects . 42

Structuring Programs for Readability . 44
Levels of Abstraction . 44
Method Level Abstractions . 46

Errors and Exceptions . 51
Returning Error Codes . 51
Using Exceptions . 53

Supplied Framework Exceptions . 57
Defining Custom Exceptions . 57

Alternatives to Error Codes, Exceptions, and Returning Nulls 59
Try Methods . 59
Special Case Design Pattern . 60

Visual Formatting . 64
The Principle of Proximity . 65
The Principal of Similarity . 67
The Principal of Uniform Connectedness . 68
The Principal of Symmetry . 69

Cohesion and Coupling . 71
Cohesion . 71
Coupling . 73

Clean Tests . 78
Qualities of Good Test . 78

Execution Speed . 78
Independent and Isolated . 78
Repeatable and Reliable . 79
Valuable . 79
Resilient to Production Code Changes 79

The Three Logical Phases of Tests . 79
The Arrange Phase . 79
The Act Phase . 80
The Assert Phase . 80

CONTENTS

How Many Asserts? . 80
Simplifying Arrange Phase code with AutoFixture 80

Building On Clean Code . 85
The Single Responsibility Principle (SRP) . 85
The Open Closed Principle (OCP) . 86
The Liskov Substitution Principle (LSP) . 86
The Interface Segregation Principle (ISP) . 87
Keep It Simple Stupid (KISS) . 87
Don’t Repeat Yourself (DRY) . 87
You Aren’t Gonna Need It (YAGNI) . 88

CONTENTS 1

Copyright 2014 Jason Roberts. All rights reserved.

No part of this publication may be transmitted or reproduced in any form or by any
means without prior written permission from the author.

The information contained herein is provided on an “as is” basis, without warranty.
The author and publisher assume no responsibility for omissions or errors, or for
losses or damages resulting from the use of the information contained herein.

All trade marks reproduced, referenced, or otherwise used herein which are not the
property of, or licensed to, the publisher or author are acknowledged. Trademarked
names that may appear are used purely in an editorial fashion with no intention of
infringement of the trademark.

About The Author

Jason Roberts is a Journeyman Software Developer with over 12 years experience.
He is a Microsoft C# MVP, a Pluralsight course author¹ and holds an honours degree
in computing. He is a writer, open source contributor and has worked on numerous
apps for both Windows Phone and Windows Store.

You can find him on Twitter as @robertsjason² and at his blog DontCodeTired.com³.

Other Leanpub Books by Jason Roberts

Keeping Software Soft

A Practical Guide for Developers, Testers, and Managers

Learn how to make software easier to change.

Keeping Software Soft⁴ (also available on Kindle)

C# Tips

Write better C#.
¹http://bit.ly/psjason
²https://twitter.com/robertsjason
³http://dontcodetired.com
⁴http://keepingsoftwaresoft.com

http://bit.ly/psjason
https://twitter.com/robertsjason
http://dontcodetired.com/
http://keepingsoftwaresoft.com/
http://bit.ly/psjason
https://twitter.com/robertsjason
http://dontcodetired.com/
http://keepingsoftwaresoft.com/

About The Author 3

This book will help you become a better C# programmer. It contains a whole host of
useful tips on using C# and .Net.

C# Tips⁵

Pluralsight Courses

Browse Pluralsight courses by Jason Roberts⁶

⁵http://bit.ly/sharpbook
⁶http://bit.ly/psjason

http://bit.ly/sharpbook
http://bit.ly/psjason
http://bit.ly/sharpbook
http://bit.ly/psjason

About this Book
Welcome.

This book will help you (and the readers of your code) be happier and more
productive by writing cleaner, more maintainable, more readable, and generally
more pleasant C#.

I hope you enjoy reading and using the information in this book as much as I
did writing it. May it improve your software development experience and overall
happiness.

Best Wishes,

Jason Roberts

Introduction
What is Clean C#?

The concept of clean C# is that which is easily understandable.

It has been described as: “…simple and direct… like well-written prose.” (Grady
Booch); makes it “hard for bugs to hide” (Bjarne Stroustrup); and that it “looks like
it was written by someone who cares” (Michael Feathers).

Clean code emphasises the human reader of the source code. Just because the
compiler can easily understand the code, it does not mean the human reader can.

Why Clean C#?

If the code in our application currently executes correctly and satisfies the end-user,
why does it matter if it is clean?

If the code will never again be read or modified there could be an argument for not
worrying about it being clean. Even in this instance, writing it in a clean way to start
with may make it easier and quicker to understand while writing it in the first (and
only) version.

If we assume that the code currently being written will also be read (and probably
changed) many times in the future, writing clean C# benefits the reader. It is
important to note that the reader may even be the programmer who originally
wrote the code. Coming back to code that was written in the past often requires
the programmer to reacquaint themselves with the code, even if it was they who
originally authored it.

If cleaner code is more easily readable - more understandable by the programmer
reading it - this implies that it should also be easier to change, whether this is to
add new features or find and fix defects. This also benefits the business and the end-
user. The business is more able to quickly respond to changing market conditions

Introduction 6

and outmanoeuvre their competition. Users may also get new features more quickly
and annoying defects removed sooner.

The human brain has limitations on the number of chunks of information it can
hold in working short term memory. Therefore writing clean C# code offers the
opportunity to reduce the cognitive load on subsequent readers, and also the
originating programmer. As an example, imagine an overly long method that makes
use of 15 different local variables. As the reader is scrolling through the method, they
have to try and retain these 15 variables in their short term memory while trying to
figure out what the code does.

Happiness is important in all areas of life. In a work setting, happier individuals may
be as much as 10-12% more productive⁷. Constantly working with dirty code may
reduce team morale, reducing the level of happiness in the programmers (and by
extension the wider team). Clean code can reduce this level of unhappiness, thus
increasing productivity. This results in obvious benefits to the both the business and
the end-user.

Using this Book

Code Samples

The code samples in this book are generally divided into “clean” and “dirty”. When
viewing a code sample, the namespace will usually indicate one of these, for example:
namespace CleanCSharp.Comments.Dirty.

Order

The book may be read in any order but it may prove beneficial for the reader to read
in sequential order as later chapters may assume previous chapters have been read.

Prescriptive

Whilst the techniques in this book will help to create cleaner C# code, some of the
suggestions may not suit the readers preferences or sense of style. The techniques

⁷http://www2.warwick.ac.uk/fac/soc/economics/staff/dsgroi/papers/manuscriptandappendix.pdf

http://www2.warwick.ac.uk/fac/soc/economics/staff/dsgroi/papers/manuscriptandappendix.pdf
http://www2.warwick.ac.uk/fac/soc/economics/staff/dsgroi/papers/manuscriptandappendix.pdf

Introduction 7

in this book will help to create cleaner C# code, though ultimately the team should
decide what and how clean C# code will be implemented by all the developers in the
team.

Clean C# is a Spectrum

Often, developers can exhibit a booleanmindset: black or white, awesome or rubbish,
dead or new. Most of the time there is a range rather than just two absolutes.

It is tempting to also think of code as either being completely clean or completely
dirty, when it is more accurate to think of clean code as a spectrum or scale of
cleanliness. One poorly named variable in an otherwise beautiful solution does not
mean the entire system is dirty.

Comments
Comments can be a highly useful form of clarifying why code is like it is. Often they
are not.

Dirty comments adversely affect the readability of the source code.

Repeating What the Code Already Says

It should be assumed that the reader knows the programming language they are
reading.

Take the following code:

namespace CleanCSharp.Comments.Dirty

{

// This defines a class called BasicCalculator

public class Calculator

{

// Define default constructor

public Calculator()

{

}

// Define a method to add two numbers

public int AddTwoNumbers(int a, int b)

{

// declare an int to hold result

int result;

// set result to sum of a and b

result = a + b;

Comments 9

// return the result to the caller

return result;

}

}

}

Notice here how painful it is here to read through this code. Not only does the human
reader have to parse the actual lines of code, they also have to spend mental energy
wading though the repetitive comments.

There is also a subtle inconsistency here too:

// This defines a class called BasicCalculator

public class Calculator

Notice that the comment is not only pointless but also misleading, it is stating an
incorrect class name.

Comments can easily become out of sync with the code they describe. To keep them
in sync also requires additional time for no additional benefit.

Repetitive comments should be deleted.

The clean version of the above code looks like the following (note the redundant
default constructor declaration has also been removed:

namespace CleanCSharp.Comments.Clean

{

public class Calculator

{

public int AddTwoNumbers(int a, int b)

{

int result;

result = a + b;

return result;

Comments 10

}

}

}

Change Control Comments

The source control system should store the information about the history of code
files.

namespace CleanCSharp.Comments.Dirty

{

/* 10 Oct 2010 Sarah Smith - Created initial version

* Edited 20 Oct 2010 Amrit P - change calculation method

* Edited 20 Nov 2010 Jane Q - fix defect 4286

*/

public class MyClass

{

}

}

Notice all these comments describing why and when the file was changed.

If a capable version control system is being used, these comments are unnecessary
and should be removed.

If a version control system is not being used, one should be implemented, and then
these comments deleted if they are not critical.

Comments as a Substitute for Self
Documenting Code

Excessive comments may be an indication that the purpose of the code is unclear
due to poor naming and/or code structure.

Take the following example:

Comments 11

namespace CleanCSharp.Comments.Dirty

{

public class SimpleCalculator

{

// Add two numbers together

public int Calculate(int a, int b)

{

return a + b;

}

}

}

Here the comment // Add two numbers together is a substitute for a well-named
method.

In order to make this code self documenting and remove the need for the comment,
the method could be rewritten as follows:

namespace CleanCSharp.Comments.Clean

{

public class SimpleCalculator

{

public int AddNumbers(int a, int b)

{

return a + b;

}

}

}

Here the well-named method obviates the need for an explanatory comment.

Commented-Out Code

Often, especially in legacy code, blocks of code can exist, but in commented-out form.

Take the following example:

Comments 12

namespace CleanCSharp.Comments.Dirty

{

public class AnotherSimpleCalculator

{

public int AddNumbers(int a, int b)

{

// a = a + 42;

return a + b;

}

}

}

Here when the AddNumbers method is read there is some code that is commented
out. What does this code mean? Was it accidentally commented out? Should it be
uncommented?

This introduces uncertainty, disrupts the reader’s flow and harms readability.

This may have been from a previous change being made but the developer making
the change either forgot to remove the code or felt like it might be needed in the
future.

If a version control system is being used, once a logical series of changes is complete,
any temporarily commented-out code should be deleted. The previous version is
available in the version control history if it is ever needed.

Pointless XML Documentation Comments

If the organisational code standards blindly require XML documentation comments
on everything then often developers simply add them to satisfy these standards,
without adding any additional benefit.

Comments 13

namespace CleanCSharp.Comments.Dirty

{

/// <summary>

///

/// </summary>

public class BasicCalculator

{

/// <summary>

/// Adds two numbers

/// </summary>

/// <param name="a"></param>

/// <param name="b"></param>

/// <returns></returns>

public int AddNumbers(int a, int b)

{

return a + b;

}

}

}

In the preceding example about half of all the lines are taken up with meaningless
comments. These obscure the actual code and increase the time required to visually
process the code.

Compare this with the following clean version:

namespace CleanCSharp.Comments.Clean

{

public class BasicCalculator

{

public int AddNumbers(int a, int b)

{

return a + b;

}

}

}

Comments 14

If the project is creating a public API to be used by other people then XML comments
on public types and members can be of great use to the consuming developer. In this
case there is a good argument for adding XML comments.

Acceptable Use of Comments

Comments can occasionally benefit the reader. For example if the intent is not easily
expressible in code, or some other important information needs to conveyed to a
potential future modifier. Comments should however be a last resort; the combined
techniques in this book should be used to obviate the need for the majority of
comments.

Naming Things
The names given to classes, methods, variables, and other items have a huge impact
on the cleanliness and understandability of the system.

Names are the fundamental method by which the intent of the writer is expressed.

It is very easy not to pay enough attention when creating a name for something,
but clean names are of such fundamental importance it is probably something that
should be held in the highest regard by the writer.

Qualities of Clean Names

Some qualities of clean names include:

• Expressive
• Accurate
• Suitable length
• Pronounceable

The name of something should indicate to the reader why it exists in the first place
and what it may be used for.

Expressive

Names should be expressive, they should clearly convey the intent of the writer.

For example, consider the following three variable declarations (from least to most
expressive):

Naming Things 16

var n = "Jason"; // default name of new user

var name = "Jason";

var defaultNewUserName = "Jason";

Notice in the preceding example that a comment has been used as a substitute for
self documenting code, to make up for the poorly named variable n.

Accurate

Names should be accurate, they should not not mislead the reader into thinking
they mean something else. The following method is named Add when it performs
multiplication:

public int Add(int a, int b)

{

return a * b;

}

Whilst this is clearly wrong, if a reader decides to call the method without reading
the code that it contains, they will get unexpected results. A more subtle example of
inaccurate method names are methods with side effects.

Suitable Length

The length of a name should be suitable for the scope and context in which it will
be used. The length of a name should be descriptive enough to convey the intent but
not so long as to tire the reader when reading.

In the following code, try to locate four names with poor lengths:

Naming Things 17

namespace CleanCSharp.Naming.SuitableLength.Dirty

{

public class Cal

{

public int AddTwoNumbersTogetherAndReturnTheResult(

int theFirstNumberToAdd, int theSecondNumberToAdd)

{

return theFirstNumberToAdd + theSecondNumberToAdd;

}

}

}

In the preceding code the public class Cal is available throughout the system (large
scope) but it has an abbreviated name that is too short. What is a Cal and what does
it do? From the name of the class alone there is no way to tell, requiring the reader to
dig into the internals of the class before they can even get a high level idea of what
the class does.

Next the method AddTwoNumbersTogetherAndReturnTheResult is too verbose. If the
name of the class were better (for example Calculator) then simply naming the
method Add would be sufficient.

The final two items are themethod parameter names.With a cleanly named class and
method, these names are too verbose. The parameters do not posses any uniqueness
in terms of what they represent: if you call an Addmethod of a Calculator you expect
to provide some numbers to add together. Because of this, the individual parameters
do not have a high level of semantic meaning when compared against each other, so
using more terse names such as a and b may be acceptable.

The following is a cleaner version:

Naming Things 18

namespace CleanCSharp.Naming.SuitableLength.Clean

{

public class Calculator

{

public int Add(int a, int b)

{

return a + b;

}

}

}

In most cases however, individual parameter names do have a greater amount of
semanticmeaning. If individual parameters have greater semanticmeaning then they
should use longer, more expressive names.

One consideration when using terse parameter names such a and b are the effect they
have on searchability. For example searching for “a” in Visual Studio is likely to find
many useless matches. If the preceding example is part of a large codebase where
searching for text has become difficult, then longer names may be more useful as in
the following code:

namespace CleanCSharp.Naming.SuitableLength.Clean

{

public class Calculator

{

public int Add(int firstNumber, int secondNumber)

{

return firstNumber + secondNumber;

}

}

}

In the following example, terse parameter names have been used when the parame-
ters do have individual semantic meaning:

Naming Things 19

namespace CleanCSharp.Naming.SuitableLength.Dirty

{

public class NewUserValidator

{

public bool ValidateName(string a, string b)

{

return true; // for demo code purposes

}

}

}

When calling ValidateName what do a and b do? We could guess that a represents
the first name and b the last name but the internals of the method would need to
be examined to confirm this assumption. In this example it makes sense to have
more semantically rich and expressive parameter names as in the following cleaner
version:

namespace CleanCSharp.Naming.SuitableLength.Clean

{

public class NewUserValidator

{

public bool ValidateName(string firstName, string lastName)

{

return true; // for demo code purposes

}

}

}

There are other options for cleanliness here, for example there could be
separate methods that validate the first name and last name, the name of
the method could also be improved. See the chapter on clean methods for
more information.

Naming Things 20

Pronounceable Names

Reading is a natural thing for the brain to do. When reading code we are interpreting
not only the C# language itself (keywords, etc.) but also the names of things. Having
names that are pronounceable helps readability as the brain has less work to do to
interpret the word(s).

The following code has some examples of unpronounceable names:

namespace CleanCSharp.Naming.Pronounceable.Dirty

{

public class NewUsrValidtr

{

public bool ValidateNme(string fstNme, string lstNme)

{

return true; // for demo code purposes

}

}

}

When reading this there is additional mental effort required for the brain to parse
names such as fstNme into “first name”. Imagine also talking with a fellow developer
about this code, how would fstNme be pronounced: “fust numee”, “fastnu me”? A
cleaner version would be as follows:

namespace CleanCSharp.Naming.Pronounceable.Clean

{

public class NewUserValidator

{

public bool ValidateName(string firstName, string lastName)

{

return true; // for demo code purposes

}

}

}

Naming Things 21

Naming Specific Items

The remainder of this chapter discusses the naming of specific items in C# programs.
The following conventions confirm to the general guidelines expressed in the MSDN
documentation⁸.

Pascal Casing refers to using an upper case letter for the first letter in the name,
for example “ThisIsPascalCase”. When using (well-understood) acronyms with Pas-
cal Casing, if the acronym is two letters then both letters are capitalised (e.g.
“IOEncoder”) and if the acronym is more than two letters only the first is capitalised,
for example: “HtmlEncoder”.

Camel Casing refers to using an lower case letter for the first letter in the name, for
example “thisIsCamelCase”. Using Camel Casing, the above two acronyms would be
written: “ioEncoder” and “htmlEncoder”.

Concerning acronyms, it is generally acceptable to use universally recognised
acronyms in names; in the above examples “IO” for input/output and “Html” for
“HyperText Markup Language”.

If using brand names that feature specific capitalisation as part of the brand
then the above rules may be overridden.

Namespaces

Namespaces should use Pascal Casing. They should accurately describe what the
reader is likely to find contained within.

Generally speaking, catch-all generic namespaces like Helpers or Utilities should
be avoided, though more specific versions such as HtmlHelpers or StringUtilities
are usually more indicative of what may be contained within the namespace.

Namespaces should not usually be versioned. For example “MyCompany.AwesomeLibV1”
and “MyCompany.AwesomeLibV2” would usually be considered bad practice.

MSDN⁹ specifies the following naming convention for namespaces:

⁸http://msdn.microsoft.com/en-us/library/ms229002%28v=vs.110%29.aspx
⁹http://msdn.microsoft.com/en-us/library/ms229026%28v=vs.110%29.aspx

http://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229026(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229026(v=vs.110).aspx

Naming Things 22

[CompanyName].[ProductOrTechnology].[Feature].[Subnamespace]

The argument for the CompanyName is to prevent conflicts when working with
other libraries. It should be noted that not all authors or projects conform to this
naming convention.

It is acceptable to use plural namespace names where appropriate, for example in the
System.Collections namespace.

A namespace should also not be the same name as a type defined within that
namespace, for example a namespace of Chocolate that contains a class also called
Chocolate.

Interfaces

Interfaces should use Pascal Casing and be prefixed with the letter “I”, for example
IControl.

Interface names should use adjectives or adjective-phrases such as “ITransformable”
and “ISavable” or nouns/noun-phrases such as “IShape” and “IShapeTransformer”. In
the case of nouns/noun-phrases it may indicate that the interface be better defined
as a class or abstract class instead.

In the book “Clean Code”, Robert C. Martin argues for the dropping of
the “I” that precedes interface names. Whilst we should never keep doing
something just because “that’s the way it’s always been done”, the “I”
convention in C# is one that may cause more confusion to the general
reader if it were omitted, than benefit gained by its omission. As always
the team should decide and all the developers should conform to the team’s
expectations.

Classes

Classes should use Pascal Casing and use nouns or noun-phrases such as Customer,
Order, and ProspectiveCustomer.

Naming Things 23

Class name should never be prefixed with encodings such as “c” or “cls” such as
cCustomer or clsCustomer.

If the class is the single implementation of an interface in a “class-interface pair”
MSDN¹⁰ then it should be named the same as the interface minus the “I”. For example
the class ShapeTransformer implements the interface IShapeTransformer.

If a class inherits from another class, it can sometimes improve readability by append-
ing the base class name to the new class. For example in .NET the ApplicationException
inherits from Exception. It does not always make sense to do this so should be
something that is considered on a case-by-case basis, rather than an absolute rule.

Methods

The names of methods should use Pascal Casing and be verb or verb-phrases that
signify the performing of some action. So a method called Customer is poorly named
as it is a noun rather than a verb. On the other hand a method called SaveCustomer

is a verb-phrase that indicates some action will be performed.

Properties

Properties should use be Pascal Casing and should use adjective or noun/noun-phases
such as Color or CustomerNumber.

If the property represents a collection of things, rather than simply adding the word
“List” or “Collection” as in OrderList it is usually more readable to simply pluralise
the property name such as: Orders.

Events

Events should use Pascal Casing and be named using verb/verb-phrases such as
Clicked, Opened, and Closed.

If the event describes a concept of something that happens before/after, use meaning-
ful past or present tense verbs; so rather than BeforeClose, use Closing and instead
of AfterClose use Closed.

¹⁰http://msdn.microsoft.com/en-us/library/ms229040%28v=vs.110%29.aspx

http://msdn.microsoft.com/en-us/library/ms229040(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229040(v=vs.110).aspx

Naming Things 24

In event handlers, favour the parameter naming conventions “sender” and “e”, for
example: object sender, SomeEventArgs e.

Fields

There are no recommended guidelines from MSDN¹¹ for internal or private fields.

For public static fields and protected fields use Pascal Casing and noun/noun-phrases
or adjectives.

One tradition for private fields is to prefix the identifier with an underscore,
such as int _age; This is probably an unnecessary form of “encoding”
other information in the names of things. In a small, highly focussed class
the underscore would probably be unnecessary, so just: int age;. In this
case follow Camel Casing rules.

Attributes

When defining custom attributes, use Pascal Casing and add the suffix “Attribute”,
for example use public class ThisIsAwesomeAttribute : Attribute rather than:
public class ThisIsAwesome : Attribute.

Method Parameters

Use Camel Casing for method parameters and favour descriptive names for seman-
tically rich parameters.

Variables

Use Camel Casing for local variables. The length of loop counters may be single
letters, such as using i as a for loop counter. If the intent can be increased by using
a more descriptive (longer) loop counter variable name then this is also acceptable.

¹¹http://msdn.microsoft.com/en-us/library/ms229012%28v=vs.110%29.aspx

http://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms229012(v=vs.110).aspx

Naming Things 25

Booleans

When naming variables, methods, properties, etc. that represent Boolean values
consider naming them so they can read in such a way as they answer a yes or no
question. Consider how they would read when used in an if statement for example.

The following are some dirty examples:

namespace CleanCSharp.Naming.Booleans.Dirty

{

class BooleanRelatedNames

{

public void SomeMethodWithBooleanVariables()

{

bool close = false;

if (close)

{

// etc.

}

bool user = false;

if (user)

{

//

}

}

public bool Open { get; set; }

public bool Value()

{

return false;

}

}

}

Naming Things 26

And some cleaner versions:

namespace CleanCSharp.Naming.Booleans.Clean

{

class BooleanRelatedNames

{

public void SomeMethodWithBooleanVariables()

{

bool isClosed = false;

if (isClosed)

{

// etc.

}

bool loggedIn = false;

if (loggedIn)

{

//

}

}

public bool IsOpen { get; set; }

public bool HasValue()

{

return false;

}

}

}

Rather than just prefixing all Booleans with “is”, consider how the statement
would read, maybe “has” improves the readability or maybe something like (in
the preceding example) loggedIn reads fine. Notice that even without “is”/”has”,
loggedIn answers a yes/no, true/false question: “is the user logged in?”.

Naming Things 27

Generic Types Parameters

If a single letter is descriptive and obvious enough use the letter T such as in
Nullable<T>. If a single letter (“T”) is not descriptive enough use longer names with
Pascal Casing such as TKey, TValue, TUserSession, etc.

Enums

Use Pascal Casing for enums and use a singular name unless the enum is a
bitwise/flags enum in which case use plural names. Do not add suffixes such as
“Flags” or “Enum” to names.

For example a bitwise/flags enum for display optionswould be named DisplayOptions
not DisplayOption.

Some General Rules

Do not use almost identical / extremely similar names. These can easily be mistaken
for one another by the reader and can lead to bugs.

Do not rely on case sensitivity to differentiate two things.

Do not try and assert a sense of superior intellect with deliberately cryptic names
that challenge the reader.

Do not try to be a comedian and name things to be “cute” or “funny”.

Do not add pointless pre/postfix context to all names: for example in a Tic Tac Toe
game codebase, do not name things: TTTBoard TTTPlayer TTTGame, etc.

Do not use different words to express the same concept, for example naming some
things “management” and some things “boss” when they refer to the same concept
(in this example the “person in charge”).

Methods
Methods in C# are the most common place where work actually takes place. Because
of this, this entire chapter is dedicated to the creation of clean methods.

Method Size and Clarity

Generally speaking, clean methods are smaller than larger methods. A cleaner
method will have fewer lines of code than a dirtier method.

When trying to reduce the number of lines in methods, this should not
be taken as a simple case of trying to fit as many logical operations on a
single line as possible using cryptic and hard to read code. If a method has
a high level of functional cohesion with each line of code at the same level
of abstraction, then it should not require hundreds of lines of code.

There are other factors (below) that contribute to clean methods, however method
size is one of the key things to look for. This does not mean that a method with fewer
lines of code is automatically clean, it could still be poorly named or have too many
parameters for example.

Some signs that a method may be too large include:

• Many levels of indentation (e.g. multiple nested if statements)
• Doing too many logically different things
• Need to scroll up/down in the editor to read it all
• Work being performed at multiple abstraction levels

It is impossible to state an absolute maximum number of lines that a method should
have, however here are some rough guidelines:

Methods 29

• less than 11 lines : probably clean
• 11 to 20 lines : possibly clean, but take notice
• 21 to 50 lines : probably dirty
• over 50 lines : dirty

Again these are just approximate guidelines - while method size is a good indicator
of cleanliness, the other key factor is how many different things the method is doing.

Cohesive Methods

There are a number of different types of cohesion (how strongly related things are);
one of these is functional cohesion.

All of the lines of code inside a method that has a high level of functional cohesion
will all relate to performing a single logical task.

It is harder for methods to remain small if they are doing too much or too varied a
task.

In the following code, notice that the Process method is doing two different things:
validation and saving a Customer to a service.

namespace CleanCSharp.Methods.Dirty

{

class Utils

{

public int Process(Customer customer)

{

if (string.IsNullOrWhiteSpace(customer.FirstName)

|| string.IsNullOrWhiteSpace(customer.LastName))

{

return -1;

}

else

{

var service = new CustomerService();

Methods 30

if (!service.Save(customer))

{

return -1;

}

else

{

return 1;

}

}

}

}

}

In the preceding code (dirty naming aside) the method Process is responsible for
doing two separate logical things: validating that the first name or last name is not
null/empty; and saving the customer (using a CustomerService). The number of lines
of code in the method body (excluding blank lines) is 16, which falls into the category
“possibly clean, but take notice”. This method is clearly not clean because it is doing
too much: validating and saving.

This is a key point. The cleanliness of code is a holistic matter. Just because
the number of lines of code in a method may seem “clean”, the method can
still be dirty in other ways.

The Processmethod in the preceding code has low functional cohesion. Also because
it is doing two different logical things, it is also harder for the method to remain
smaller.

This method could be refactored into two separate methods, each method now being
more functionally cohesive as shown in the following code:

Methods 31

namespace CleanCSharp.Methods.Clean

{

class Utils

{

public int Process(Customer customer)

{

const int customerNotSaved = -1;

const int customerSavedSuccessfully = 1;

if (!IsValidCustomer(customer))

{

return customerNotSaved;

}

if (!SaveCustomer(customer))

{

return customerNotSaved;

}

return customerSavedSuccessfully;

}

private bool IsValidCustomer(Customer customer)

{

if (string.IsNullOrWhiteSpace(customer.FirstName)

|| string.IsNullOrWhiteSpace(customer.LastName))

{

return false;

}

return true;

}

private bool SaveCustomer(Customer customer)

{

var service = new CustomerService();

Methods 32

var successfullySaved = service.Save(customer);

return successfullySaved;

}

}

}

In this cleaner version, the Process method is now only 11 lines of code. Some
constants have been introduced to replace the magic values (-1 and 1) and the nesting
has been reduced by eliminating an unnecessary else. There is more that could
be done here, but for the purpose of exploring functional cohesiveness, notice that
both the IsValidCustomer and SaveCustomermethods each now do one well-defined
thing. Both of these methods have high functional cohesion, because of this, notice
that the methods are also short: 5 and 3 lines of code respectively.

Mixing Abstraction Levels

In the preceding refactored code all three methods now contain code at the same level
of abstraction. In the Processmethod the details of how a customer is validated and
where a customer is stored are left to the methods at a lower abstraction level. The
Process method can be read at a higher abstraction level and if the reader needs
the details, they can examine the lower level IsValidCustomer and SaveCustomer

methods.

From the point of view of the reader, their brain is not having to mentally switch
between varying levels of abstraction in a single method. This concept is one of the
factors that contribute to Structuring Programs for Readability.

Action or Answering Methods

One way to determine if a method may not be functionally cohesive is to evaluate it
as either:

• Performs some action/function; or

Methods 33

• Answers a question for the caller

If a method is doing both of these things there may be an opportunity to refactor it.

Take the following IsValidCustomer method:

private bool IsValidCustomer(Customer customer)

{

if (string.IsNullOrWhiteSpace(customer.FirstName)

|| string.IsNullOrWhiteSpace(customer.LastName))

{

return false;

}

return true;

}

This clearly falls into the “answers a question for the caller” category; it allows the
caller to answer the question “is the customer valid?”.

Contrast this with the following SaveCustomer method:

private bool SaveCustomer(Customer customer)

{

var service = new CustomerService();

var successfullySaved = service.Save(customer);

return successfullySaved;

}

This method is both “performing some action/function” and “answering a question
for the caller”. It is performing the action of saving a customer and also answering
the caller’s question “did the customer get saved successfully?”.

Methods 34

In this example the Boolean return value of the method is being used as an error
flag. Ideally this would be refactored to use an exception based approach.

Like the other aspects that make up clean code, there may be valid reasons to allow
these two concepts to be mixed in a single method. For example, in ORM code
when the Update, SaveChanges, etc. methods are called they may return an integer
representing the number of database records affected.

Method Parameters

The more parameters a method has, the harder it becomes to understand.

Methods can be divided into a number of categories based on the number of
parameters they take:

• zero parameters : clean
• one parameter : probably clean
• two parameters : possibly dirty
• three parameters : probably dirty
• more than three parameters : dirty

Again these are just guidelines, the other factors of method cleanliness
should also be considered.

Another consideration when it come to the number of method parameters is that of
testing. The more parameters (and range of input values) a method has, the harder
it is to test. This is because the combinations of all possible input parameter values
is going to rapidly increase as more parameters are added.

Methods 35

Methods with Zero Parameters

Methods with no parameters are the easiest to understand because the reader or
maintainer does not have to expendmental cycles on thinking what should be passed
to the method when calling it.

Methods with One Parameter

Methods with one parameter (monadic methods) are the next easiest to understand.

The IsValidCustomer method is an example of a monadic method:

private bool IsValidCustomer(Customer customer)

{

if (string.IsNullOrWhiteSpace(customer.FirstName)

|| string.IsNullOrWhiteSpace(customer.LastName))

{

return false;

}

return true;

}

This method takes a single parameter called customer. Even though a Customer

contains multiple properties it is still classed as a single parameter.

Monadic methods generally fall more easily into one of the two “action” or “answer-
ing method types”.

Methods with Two Parameters

Methods with two parameters (dyadic methods) start to become harder to under-
stand.

When reading a dyadic method, mental effort must be expended to now understand
two parameters.

Methods 36

Because there are now two parameters, it can become easier for bugs to be intro-
duced. For example if a method has two parameters, both of type string then it is
easier to get the values passed to these two strings mixed up.

If it is a simple matter to refactor a dyadic method into method(s) that take only
a single parameter this may increase readability and cleanliness, but only where it
makes sense and is not done in a contrived way. For example a method to plot a
co-ordinate could naturally require two parameters: x and y; or a method to add two
numbers together for example.

Methods with Three Parameters

Methods with three parameters (triadic methods) are harder still to understand.
There are now three parameters to be parsed by the reader and more potential for
accidentally mixing up what is passed to the parameters.

Methods with More Than Three Parameters

Methods that have four or more parameters are very hard to read, call, and maintain.
These methods should be refactored and reduced to methods that taker fewer
parameters or alternatively the individual parameters encapsulated inside a class.

Refactoring to Reduce the Number of Parameters

One way to deal with cumbersome methods that take too many parameters is to
wrap the parameters into their own class and instead pass a single argument of this
class instead.

Take the following method that plots a coordinate:

public void Plot(int x, int y)

{

// etc

}

This method could be reduced to monadic form by introducing the following
PlotPoint class:

Methods 37

class PlotPoint

{

public int X { get; set; }

public int Y { get; set; }

}

The method can now be written using the monadic form as follows:

public void Plot(PlotPoint point)

{

// etc

}

If the original method also contained a parameter to choose the size of the plotted
point then this refactoring would have reduced a triadic method to a monadic one
by also adding a Size property to the PlotPoint class.

Params

The params keyword allows a method parameter to take a variable number of values
when the method is called. Generally speaking a params parameter still counts as
a single parameter. For example a method with a single params parameter is still a
monadicmethod. However, params should not be used as a hack to reduce the number
of parameters in a method.

Output Parameters

C# allows a parameter to be defined as an out parameter. This means that what looks
like an input parameter can also function as an output from the method, perhaps in
addition to an actual return value.

Output parameters may be occasionally useful, for example the various TryParse
methods in the .NET framework that return a boolean if a value can be parsed from
a string, in addition to the output value in an out parameter.

The natural interpretation of method parameters is that they pass some information
into the method for it to use, rather than as a mechanism for the method to return

Methods 38

a value. Because of this, out parameters should be avoided unless there is a good
reason to use them.

Named Arguments

If a methodwithmultiple parameters exists but cannot be refactored for some reason,
one way to increase the readability of the calling code is to explicitly state the
parameter names.

Assuming the following Plot method can not be refactored:

public void Plot(int x, int y, int size)

{

// etc

}

This method takes three parameters all of type int and can be called using positional
arguments with Plot(10, 15, 10); This is not particularly readable without needing
to dig into the method parameters. This call could instead be re-written using named
arguments: Plot(x: 10, y: 15, size: 10); This is slightly more verbose but
removes the ambiguity of what each argument means.

If a monadic method needs a named argument to improve readability, it may be a
sign that the method itself is not well-named.

Boolean Switching Arguments

If a method defines a Boolean parameter that decides what the method does, this
can indicate that the method is doing more than one logical thing and should be
refactored.

The following code shows an example of a method with a “boolean switching
argument”:

Methods 39

namespace CleanCSharp.Methods.Dirty

{

class BooleanSwitchingArgumentsExample

{

public void CallingCode()

{

if (DateTime.Now.Hour < 12)

{

OutputGreeting(true);

}

else

{

OutputGreeting(false);

}

}

public void OutputGreeting(bool isMorning)

{

if (isMorning)

{

Console.WriteLine("Good Morning");

}

else

{

Console.WriteLine("Good Day");

}

}

}

}

In the preceding code, the OutputGreeting method defines a boolean switching
argument that decides what the method does. Notice the calling code is not very
understandable: OutputGreeting(true) and OutputGreeting(false).

The following code is a refactored version with two separate methods for the two
kinds of greeting. Notice in this code that the two new methods do not require any
parameters which further contributes to readability.

Methods 40

namespace CleanCSharp.Methods.Clean

{

class BooleanSwitchingArgumentsExample

{

public void CallingCode()

{

if (DateTime.Now.Hour < 12)

{

OutputMorningGreeting();

}

else

{

OutputDaytimeGreeting();

}

}

private static void OutputDaytimeGreeting()

{

Console.WriteLine("Good Day");

}

private static void OutputMorningGreeting()

{

Console.WriteLine("Good Morning");

}

}

}

Multiple Returns

It is acceptable to have multiple return statements in a method if this improves the
clarity. This may also reduce the number of lines of code in the method.

In the following example, a strict “only ever have one return statement” policy has
been implemented:

Methods 41

namespace CleanCSharp.Methods.Dirty

{

class MethodExitPoints

{

public string GenerateAgeAppropriateGreeting(

int customerAgeInYears)

{

string greeting;

if (customerAgeInYears < 16)

{

greeting = "Yo!";

}

else if (customerAgeInYears < 25)

{

greeting = "Hi there";

}

else

{

greeting = "Dear Sir/Madam";

}

return greeting;

}

}

}

Compare this to the following method that uses multiple return statements:

Methods 42

namespace CleanCSharp.Methods.Clean

{

class MethodExitPoints

{

public string GenerateAgeAppropriateGreeting(

int customerAgeInYears)

{

if (customerAgeInYears < 16)

{

return "Yo!";

}

if (customerAgeInYears < 25)

{

return "Hi there";

}

return "Dear Sir/Madam";

}

}

}

This version of the GenerateAgeAppropriateGreeting method is easier to read and
is shorter than the single return version.

Code Duplication in Methods

As in other areas of the codebase, if multiple methods have a lot of duplicated
code, this should ideally be refactored out into a method that contains the common
(previously duplicated) code, so that it can be shared by the other methods.

Methods with Side Effects

A method with side effects misleads the caller. For example if a ValidateCustomer

method also saved the customer to the database, this saving is a hidden side effect

Methods 43

and is clearly bad practice. Not only this, it also means the method is doing more
than one logical thing.

Other side effects may include the unexpected changing of field/property values,
raising unexpected events, and changing input method parameter object values.

Structuring Programs for
Readability
The overall structure of large codebases can help to enhance readability or reduce it.

One way to improve readability is to think of the reader’s brain as only being able
to work at a similar level of abstraction at any given time.

For example, suppose a method that is named at a higher abstraction level such
as ValidateCustomer. The level of abstraction that the brain would expect for this
method (and the code it contains) is to describe validation/business rules. If the
ValidateCustomer method also performs work at a lower abstraction level such as
setting database fields, then the reader’s brain is having to switch mental abstraction
levels when trying to read and understand the code.

Levels of Abstraction

One metaphor to represent this idea of abstractions is that of traditional paper-based
books in a public lending library.

The following diagram represents the abstraction levels of source code using this
metaphor.

Structuring Programs for Readability 45

Levels of Abstraction

Structuring Programs for Readability 46

While this metaphor is not perfect, it seeks to illustrate the fact that items higher up
in the diagram need a different level of cognitive processing than items lower down.

Imagine a library building that had no shelves or books but rather pages of books
stuck to all the walls of the building. In this case there are greatly reduced levels
of abstraction, essentially reduced to pages and paragraphs. Clearly this harms
readability, even it might make a good art installation.

Grouping concepts into similar levels of abstraction can help in a number of ways.
Firstly it can help to improve navigation around the codebase. For example in a
traditional book it is easy to gradually “drill down” to find the right paragraph
by scanning the chapters first (higher abstraction level, less cognitive load) and
then drilling down into specific paragraphs. The second way is the reduction of
unnecessary cognitive processing. If for example a method is operating at multiple
abstractions levels, then it takes more mental energy to “read between the lines” and
only focus on the abstraction level that is required for the current task.

Method Level Abstractions

As a simple example, assume that the following classes exist:

public class Customer

{

public string FirstName { get; set; }

public string SecondName { get; set; }

public bool IsPriorityCustomer { get; set; }

public decimal AnnualIncome { get; set; }

}

public class ProspectiveCustomer

{

public string FirstName { get; set; }

public string SecondName { get; set; }

public decimal AnnualIncome { get; set; }

}

Structuring Programs for Readability 47

The following version of the ProspectiveCustomerValidator class has mixed ab-
straction levels in the same method:

public class ProspectiveCustomerValidator

{

public Customer CreateValidatedCustomer(

ProspectiveCustomer prospectiveCustomer)

{

if (string.IsNullOrWhiteSpace(

prospectiveCustomer.FirstName))

{

throw new ArgumentException("Invalid FirstName");

}

if (string.IsNullOrWhiteSpace(

prospectiveCustomer.SecondName))

{

throw new ArgumentException("Invalid SecondName");

}

var newValidCustomer = new Customer

{

FirstName = prospectiveCustomer.FirstName,

SecondName = prospectiveCustomer.SecondName

};

if (prospectiveCustomer.AnnualIncome > 100000)

{

newValidCustomer.IsPriorityCustomer = true;

}

return newValidCustomer;

}

}

Structuring Programs for Readability 48

Notice in the preceding code, other than the method doing too many different things,
it is also hard to get an overall higher-level-of-abstraction understanding of what is
going on. For example the exact rules that determine what a valid FirstName are
lower in abstraction level than the overall process of creating a new customer. Also
notice the logic to determine if a new customer is a priority customer includes lower
level detail such as the annual income being greater than 100000.

Compare the preceding code to the following refactored version:

public class ProspectiveCustomerValidator

{

// Higher abstraction level

public Customer CreateValidatedCustomer(

ProspectiveCustomer prospectiveCustomer)

{

EnsureValidDetails(prospectiveCustomer);

var validatedCustomer =

CreateNewCustomerFrom(prospectiveCustomer);

SetCustomerPriority(validatedCustomer);

return validatedCustomer;

}

// Medium abstraction level

private static void EnsureValidDetails(

ProspectiveCustomer prospectiveCustomer)

{

EnsureValidFirstName(prospectiveCustomer);

EnsureValidSecondName(prospectiveCustomer);

}

Structuring Programs for Readability 49

private static Customer CreateNewCustomerFrom(

ProspectiveCustomer prospectiveCustomer)

{

return new Customer

{

FirstName = prospectiveCustomer.FirstName,

SecondName = prospectiveCustomer.SecondName,

AnnualIncome = prospectiveCustomer.AnnualIncome

};

}

// Low abstraction level

private static void EnsureValidFirstName(

ProspectiveCustomer prospectiveCustomer)

{

if (string.IsNullOrWhiteSpace(prospectiveCustomer.FirstName))

{

throw new ArgumentException("Invalid FirstName");

}

}

private static void EnsureValidSecondName(

ProspectiveCustomer prospectiveCustomer)

{

if (string.IsNullOrWhiteSpace(

prospectiveCustomer.SecondName))

{

throw new ArgumentException("Invalid SecondName");

}

}

private static void SetCustomerPriority(Customer customer)

{

if (customer.AnnualIncome > 100000)

{

Structuring Programs for Readability 50

customer.IsPriorityCustomer = true;

}

}

}

In the preceding code, the class has been refactored in an attempt to represent
different levels of abstractions (as noted by the comments that have been included
purely for demo purposes). This means that a reader can more easily choose what
abstraction level they need to perform a particular task. For example if the reader just
wants a high level understanding of the steps to convert a ProspectiveCustomer to a
Customer their brain can operate at that level of abstraction without being distracted
by lower level details (such as specifics on annual income numbers).

Errors and Exceptions
Error handling is an essential part of most codebases. There are a number of ways of
handling errors and allowing calling code to respond to errors.

Returning Error Codes

One way to indicate to the caller that an error has occurred is to return some value
from a method call to indicate whether the method was successful or not. The
following code shows an example of a method that uses an int return value to signal
to the caller what the outcome of the operation was.

namespace CleanCSharp.Errors.Dirty

{

public class SomeClass

{

public int DoSomeProcess(int? id)

{

if (id == null)

{

return -1; // null id

}

string data = LoadData();

if (string.IsNullOrWhiteSpace(data))

{

return -2; // data is corrupt

}

ProcessData(data);

Errors and Exceptions 52

return 0; // no error, all good

}

private string LoadData()

{

return "some data";

}

private void ProcessData(string data)

{

// do something

}

}

}

A consumer of this code will need to check the various status codes to know what
has happened as the following code shows.

namespace CleanCSharp.Errors.Dirty

{

public class ConsumerOfSomeClass

{

public void Consume()

{

var sc = new SomeClass();

const int idToProcess = 42;

int returnCode = sc.DoSomeProcess(idToProcess);

switch (returnCode)

{

case -1: // null id

// do something

break;

Errors and Exceptions 53

case -2: // corrupt data

// do something

break;

case 0: // no error

Save(idToProcess);

break;

}

}

private void Save(int id)

{

// save

}

}

}

Notice in the preceding code that there is a lot of clutter; the business logic/applica-
tion flow is harder to recognize due to all the error handling code.

There are a number of other problems with the error code approach. First, every time
the DoSomeProcessmethod is called anywhere in the codebase, the calling code must
check the return codes. Assuming the programmer remembers to do this and the
correct error codes are used, code duplication creeps in and readability is reduced.
Second, these magic numbers representing the error codes do not have a lot of
meaning, for example when a reader sees -2 they will need to do further reading
to try and understand the error that is being handled.

Returning error codes is also limited in other ways, for example if the method already
returns a value, how is an additional error return code added? The same limitation
exists when accessing properties.

Using Exceptions

Rather than returning error codes, in C#, error handling can be better implemented
using exceptions. Exceptions can simplify the calling code and make it easier for the
reader to reason about the error handling that has been implemented. In C#, the throw

Errors and Exceptions 54

statement is used to create an error condition. The try, catch, finally keywords can
be used to detect and respond to error conditions.

The following code shows a refactored version of SomeClass that uses exceptions
rather than error return codes. Notice that the DoSomeProcess method appears more
readable than the preceding version.

using System;

using System.IO;

namespace CleanCSharp.Errors.Clean

{

public class SomeClass

{

public void DoSomeProcess(int? id)

{

if (id == null)

{

throw new ArgumentNullException("id");

}

string data = LoadData();

ProcessData(data);

}

private string LoadData()

{

var demoData = "";

if (string.IsNullOrWhiteSpace(demoData))

{

throw new

InvalidDataException(

"The data stream contains no data.");

}

Errors and Exceptions 55

return demoData;

}

private void ProcessData(string data)

{

// do something

}

}

}

The consumer can also now be changed to the following:

using System;

using System.Diagnostics;

using System.IO;

namespace CleanCSharp.Errors.Clean

{

public class ConsumerOfSomeClass

{

public void Consume()

{

var sc = new SomeClass();

const int idToProcess = 42;

try

{

sc.DoSomeProcess(idToProcess);

}

catch (ArgumentNullException ex)

{

// null id

// do something such as logging

Errors and Exceptions 56

// if cannot respond to this

// exception propagate up the

// call stack

throw;

// Notice the throw is not: throw ex;

}

catch (InvalidDataException ex)

{

// bad data

// do something

throw;

}

catch (Exception ex)

{

// any other exceptions that may occur

// do something

throw;

}

Save(idToProcess);

}

private void Save(int id)

{

// save

}

}

}

Notice that rather than harder to understand error codes, the reader can now
understand what types of error may occur by looking at the exception types in the

Errors and Exceptions 57

catch blocks. Also notice that the exceptions in the catch blocks are caught from the
more specific exceptions down to the most general (the Exception class).

Usually, an exception is only caught if it needs to be handled in some way. When
an exception has been caught in a catch block, the problem can either be fixed or
if it cannot be fixed it can be propagated “rethrown” to higher level callers. When
rethrowing exceptions, using throw; will throw the same exception to higher level
callers, if throw ex; is used the exception will still be rethrown but the stack trace
of the thrown exception will not be that of the originally caught exception.

Supplied Framework Exceptions

There are many pre-defined exceptions that can be used, including:

• System.ArgumentException
• System.ArgumentNullException
• System.ArgumentOutOfRangeException
• System.InvalidOperationException
• System.NotSupportedException

There are a number of good practiceswhen using System.Exception or System.SystemException
:

• Do not manually throw either of these exceptions
• In framework code, only catch these exceptions if they are rethrown
• Only catch these exceptions in top level handlers

For more detailed guideline see MSDN¹².

Defining Custom Exceptions

If existing exceptions do not satisfy a particular use case then custom exceptions can
be defined.

The following are guidelines when defining custom exception types:

¹²https://msdn.microsoft.com/en-us/library/vstudio/ms229007%28v=vs.100%29.aspx

https://msdn.microsoft.com/en-us/library/vstudio/ms229007(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/vstudio/ms229007(v=vs.100).aspx

Errors and Exceptions 58

• Generally, inherit from System.Exception
• End the custom class name with “Exception”
• Implement the standard exception constructor overloads
• Do not have deep exception hierarchies
• Implement ISerializable if the exception will be used across app domain/re-
moting boundaries

The following code defines a custom exception called MyCustomException that
provides the three standard constructors plus an additional custom property called
SomeId that can be used to pass additional information to callers/handlers when this
exception is thrown.

using System;

namespace CleanCSharp.Errors.Clean

{

public class MyCustomException : Exception

{

public MyCustomException()

{

}

public MyCustomException(string message) : base(message)

{

}

public MyCustomException(string message, Exception inner)

: base(message, inner)

{

}

public int SomeId { get; set; }

}

}

Errors and Exceptions 59

Alternatives to Error Codes, Exceptions, and
Returning Nulls

Try Methods

In addition to throwing exceptions, an additional option that can be provided to
consumers is to call a Try method. A Try method returns true if the operation
succeeded and false if it failed (and does not throw an exception). The Try method
usually has an out parameter by which the result of the operation can be passed to
the caller.

The following code shows an example of implementing a method (Parse) that throws
an exception and a companion Try version (TryParse).

using System;

namespace CleanCSharp.Errors.Clean

{

public class Color

{

public static Color Parse(string colorName)

{

if (!IsValidColor(colorName))

{

throw new ArgumentOutOfRangeException(

"colorName",

colorName + " is not a valid color");

}

return new Color();

}

public static bool TryParse(string colorName, out Color color)

{

Errors and Exceptions 60

if (!IsValidColor(colorName))

{

color = null;

return false;

}

color = new Color();

return true;

}

private static bool IsValidColor(string colorName)

{

return true; // validation logic goes here

}

}

}

Calling code can make use of the TryParse method as shown in the following code.

Color c;

if (!Color.TryParse("blue", out c))

{

// error handling locic

}

else

{

// c now is a valid Color object

}

Special Case Design Pattern

An alternative to returning error codes, throwing exceptions, or returning a null

value is to return a special case object. This special case object looks identical (same

Errors and Exceptions 61

interface) to a “real” object but means that the consumer does not have to write null
checking logic or possibly catch ArgumentNullExceptions.

The following code shows a simple example where the EmailCustomer method has
to first perform a null check before sending emails.

namespace CleanCSharp.Errors.Dirty

{

public class Customer

{

public string EmailAddress { get; set; }

public void SendEmail(string message)

{

// send email to customer

}

}

public static class CustomerFinder

{

public static Customer Find(int id)

{

// if cannot find customer

return null;

}

}

public class CustomerFinderConsumer

{

public void EmailCustomer()

{

Customer c = CustomerFinder.Find(42);

// consumer has to check for nulls

if (c != null)

{

c.SendEmail("Hello!");

Errors and Exceptions 62

}

}

}

}

A refactored version follows, notice that no null check is required as CustomerFinder.Find
never returns null, instead it returns the special case CustomerNotFound whose
SendEmail does nothing.

namespace CleanCSharp.Errors.Clean

{

public class Customer

{

public string EmailAddress { get; set; }

public virtual void SendEmail(string message)

{

// send email to customer

}

}

public class CustomerNotFound : Customer

{

public override void SendEmail(string message)

{

// DO NOTHING

}

}

public static class CustomerFinder

{

public static Customer Find(int id)

{

// if cannot find customer

return new CustomerNotFound();

}

Errors and Exceptions 63

}

public class CustomerFinderConsumer

{

public void EmailCustomer()

{

Customer c = CustomerFinder.Find(42);

c.SendEmail("Hello!");

}

}

}

Visual Formatting
The way that source code is visually formatted can have a great effect on the
readability of programs. Even if the code is otherwise clean, poor visual formatting
can still hurt readability.

The following code shows the version of ProspectiveCustomerValidator that main-
tains some of the other clean code practices outlined in this book, but with some
vertical whitespace removed.

using System; using CleanCSharp.StructringCode;

namespace CleanCSharp.VisualFormatting.Dirty{

public class ProspectiveCustomerValidator{

public Customer CreateValidatedCustomer(

ProspectiveCustomer prospectiveCustomer){

EnsureValidDetails(prospectiveCustomer);

var validatedCustomer=CreateNewCustomerFrom(

prospectiveCustomer);

SetCustomerPriority(validatedCustomer);

return validatedCustomer;

}

private static void EnsureValidDetails(

ProspectiveCustomer prospectiveCustomer){

EnsureValidFirstName(prospectiveCustomer);

EnsureValidSecondName(prospectiveCustomer);}

private static Customer CreateNewCustomerFrom(

ProspectiveCustomer prospectiveCustomer){

return new Customer{

FirstName=prospectiveCustomer.FirstName,

SecondName=prospectiveCustomer.SecondName,

AnnualIncome=prospectiveCustomer.AnnualIncome};}

private static void EnsureValidFirstName(

Visual Formatting 65

ProspectiveCustomer prospectiveCustomer){

if (string.IsNullOrWhiteSpace(

prospectiveCustomer.FirstName)){

throw new ArgumentException("Invalid FirstName");

}}

private static void EnsureValidSecondName(

ProspectiveCustomer prospectiveCustomer){

if (string.IsNullOrWhiteSpace(

prospectiveCustomer.SecondName)){

throw new ArgumentException("Invalid SecondName");

}

}private static void SetCustomerPriority(Customer customer)

{

if (customer.AnnualIncome > 100000){

customer.IsPriorityCustomer = true;

}

}

}

}

Notice that when reading the preceding code that the eye has to try very hard to
differentiate different logical parts of the code.

There are some accepted design principles that can be applied to source code
formatting. These principles are often referred to as the Gestalt principles.

The Principle of Proximity

The Gestalt principle of Proximity states that things that are closer to each other
seem more related. For example, in a restaurant we perceive that people on the same
table are more related to each other than to people on different tables.

In the following code, there is an automatic sense that method A and B feel related to
each other. This is because they are in closer proximity to each other, method C feels
more distant and unrelated.

Visual Formatting 66

namespace CleanCSharp.VisualFormatting.ExampleCode

{

public class Class1

{

public void A()

{

//

}

public void B()

{

//

}

public void C()

{

//

}

}

}

The principle of Proximity can be used when declaring variables as the following
code demonstrates.

Visual Formatting 67

public void SomeMethod()

{

bool isVipCustomer;

int years;

string x;

decimal y;

}

In the preceding code there is a sense that isVipCustomer and years are related
(though years should be renamed to something like yearsAtVipStatus rather than
relying solely on Proximity).

Proximity also applies to where variables are declared, for example the traditional
approach of declaring all variables at the top of the method (lower proximity), versus
declaring them throughout the method close to where they are first needed (higher
proximity).

The Principal of Similarity

Things that are similar in some way seem more related, this similarity could be in
shape, size, color, texture, etc.

IDEs such as Visual Studio use similarity of color to help us perceive what a piece of
code is; blue for keywords, green for comments, etc.

Naming conventions in source code can increase or decrease the level of similarity
to other pieces of code. In the following code _firstName and _lastName feel similar
due to their preceding underscores. fullName does not have a preceding underscore
so is perceived as less similar.

_firstName = "Sarah";

_lastName = "Smith";

fullName = _firstName + " " + _lastName;

The perception of “difference” can be heightened by also using proximity to separate
the lines of code as in the following example.

Visual Formatting 68

_firstName = "Sarah";

_lastName = "Smith";

fullName = _firstName + " " + _lastName;

The Principal of Uniform Connectedness

The feeling of relatedness can be strongly increased by using the principle of Uniform
Connectedness.

The following diagram show a series of dots, all the same size and color, however by
enclosing some of the dots, they are perceived as being related in some way.

Uniform Connectedness

In C#, code blocks contain groups of (hopefully) related code - lines of code are
contained inside sets of braces {}. These braces contain code (much like the line
containing the dots) and can increase the feeling of relatedness.

Visual Formatting 69

Take the following code:

bool a;

bool b;

bool c;

bool d;

These Booleans feel related due to their proximity and their similarity of names
(single letters, ascending order). If these same variables are contained in additional
braces then this changes the perception of their relatedness as the following code
demonstrates.

{

bool a;

bool b;

}

{

bool c;

bool d;

}

In the preceding code there are now two strongly distinct groups.

The Principal of Symmetry

Humans tend to like the appearance of symmetry. One style of C# code that may
appear jarring is the use of unbalanced (asymmetrical) braces. In the following code,
the first (asymmetrical) if statement may feel less symmetrical than the second.

Visual Formatting 70

if (true) {

Console.Write("true");

}

if (true)

{

Console.Write("true");

}

Cohesion and Coupling
The concepts of cohesion and coupling are important concerns when it comes to
creating clean C# code.

Cohesion

Cohesion is the “relatedness” of different pieces of code, it is the degree to which
pieces of code belong together. Often the level of cohesion is referred to as “low
cohesion” or “high cohesion” though there are a number of “degrees of cohesion”,
rather than it being a binary proposition.

The concept of cohesion can be applied at different levels in the source code. For
example an individual method could exhibit low cohesion if the lines of code within
it do not really belong together. The same thinking can be applied at the class level,
i.e. do all the methods, properties, etc. belong together? At a higher level, cohesion
can also be applied to namespaces and assemblies.

The following code shows a class that would be described as having low cohesion.

namespace CleanCSharp.CohesionAndCoupling.Dirty

{

public static class Utils

{

public static int AddNumbers(int a, int b)

{

return a + b;

}

public static bool IsValidCustomerAge(int ageInYears)

{

return ageInYears > 17 && ageInYears < 100;

Cohesion and Coupling 72

}

public static void ProcessOrder(Order order)

{

// Validate order

if (order.Quantity < 1)

{

throw new ArgumentException(

"order quantity must be greater that 0");

}

// code to save to SQL db

}

}

}

In the preceding code, the Utils class itself exhibits low cohesion. The methods
inside the class are not highly related, the addition of two numbers has no relation
to validating a customer’s age or processing an Order. The ProcessOrder method
itself also exhibits low cohesion; the method is validating a customer and saving it
to a database. Notice in both these cases the names of the class and method are not
very specific, the class itself is called Utilswhich does not have much meaning. The
ProcessOrdermethod is also very non-specific. Often these generalized, non-specific
names are an indication that cohesion may be lacking.

There are various degrees of cohesion, from best to worst:

• Functional Cohesion: code that does highly related and well-defined task(s)
• Sequential Cohesion: code grouped by the (data) output of one thing being the
(data) input to the next, like a car assembly line

• Communicational Cohesion: code grouped together because it uses the same
set/table/entity of data

• Procedural Cohesion: code grouped by being parts of a task that need to be
executed in a particular order

• Temporal Cohesion: code grouped by when it is executed in the program
execution life cycle

Cohesion and Coupling 73

• Logical Cohesion: code grouped by seemingly logically related operations, but
being functionally different, such as a LoadCustomer class that can load from a
database, a CSV file, and an Excel file.

• Coincidental Cohesion: code is grouped arbitrarily without meaning, such as
the preceding example Utils class

A higher cohesion codebase will often consist of a greater number of smaller
classes/methods with each one being functionally cohesive.

Coupling

Whereas cohesion refers to the relatedness of pieces of code, coupling refers to how
strong the connection is between pieces of code. Pieces of code that are strongly
coupled, like two pieces of plastic superglued together, are hard to separate, reuse
and test independently.

Code that is “superglued” together is referred to as highly coupled, strongly coupled,
or tightly coupled. Conversely, non-“superglued” code is referred to using terms like
low coupling, loosely coupled, or weakly coupled.

There are many ways that pieces of code can be coupled. The following code shows
an example of Global Coupling (also known as Common Coupling).

namespace CleanCSharp.CohesionAndCoupling.Dirty

{

public class ClassA

{

public static string SomeSharedData;

}

public class ClassB

{

public void SomeMethod()

{

ClassA.SomeSharedData = "xxxx";

}

Cohesion and Coupling 74

}

public class ClassC

{

public void SomeMethod()

{

var someVariable = ClassA.SomeSharedData;

// do something with someVariable

}

}

}

In the preceding code ClassB and ClassC are coupled to ClassA by accessing the static
SomeSharedData field. The coupling here occurs in the lines ClassA.SomeSharedData
= "xxxx"; and var someVariable = ClassA.SomeSharedData;. The classes ClassB
and ClassC are also harder to test in isolation. In a test ClassA will also need to be
accessed because it contains the shared data.

Another way that tight coupling can manifest itself is by relying on instantiation of
concrete dependencies in code rather than instead relying on abstractions (interfaces,
abstract classes) and having the dependency passed into to the class. Thus the
consuming class does not control the creation of its dependencies, but something
external to the class creates a concrete instance and passes this to the class.

The following code shows the SendWelcomeEmails method creating a new concrete
EmailGateway before using it. The line var gateway = new EmailGateway();

creates a tight coupling between the NewCustomerWelcomeEmailSender class and the
EmailGateway class.

Cohesion and Coupling 75

namespace CleanCSharp.CohesionAndCoupling.Dirty

{

public class EmailGateway

{

public void SendEmail(string address, string messageBody)

{

// etc.

}

}

public class NewCustomerWelcomeEmailSender

{

public void SendWelcomeEmails()

{

var emailAddresses = GetNewCustomerEmailAddresses();

var gateway = new EmailGateway();

foreach (var emailAddress in emailAddresses)

{

gateway.SendEmail(emailAddress, "Welcome!");

}

}

private IEnumerable<string> GetNewCustomerEmailAddresses()

{

// get emails addresses

yield return "some@email430340i0m0imd3.net";

}

}

}

One way to reduce this coupling is for the NewCustomerWelcomeEmailSender class
to instead rely on an abstraction that represents an email gateway and for this
dependency to be passed to it from the caller.

Cohesion and Coupling 76

The following code shows a refactored version with reduced coupling.

namespace CleanCSharp.CohesionAndCoupling.Clean

{

public interface IEmailGateway

{

void SendEmail(string address, string messageBody);

}

public class EmailGateway : IEmailGateway

{

public void SendEmail(string address, string messageBody)

{

// etc.

}

}

public class NewCustomerWelcomeEmailSender

{

private readonly IEmailGateway _gateway;

public NewCustomerWelcomeEmailSender(IEmailGateway gateway)

{

_gateway = gateway;

}

public void SendWelcomeEmails()

{

var emailAddresses = GetNewCustomerEmailAddresses();

foreach (var emailAddress in emailAddresses)

{

_gateway.SendEmail(emailAddress, "Welcome!");

}

}

Cohesion and Coupling 77

private IEnumerable<string> GetNewCustomerEmailAddresses()

{

// get emails addresses

yield return "some@email430340i0m0imd3.net";

}

}

}

Notice in the preceding code the introduction of the IEmailGateway abstraction
and the NewCustomerWelcomeEmailSender constructor that takes one as a parameter.
The SendWelcomeEmails method now uses this supplied IEmailGateway rather than
creating its own.

Clean Tests
Test code should be clean. It should usually be as clean as the production code it tests.
In this regard, all of the information given in preceding chapters applies to test code.

There are a number of additional considerations when it comes to clean C# test code,
these additional consideration are covered in this chapter.

Qualities of Good Test

There are a number of qualities that clean tests possess.

Execution Speed

When executing unit tests, tests that execute only a small part (perhaps just a single
class) of the overall codebase, they should execute very quickly. While there is no
single absolute rule for the maximum time, if developers are waiting for 30 minutes
to run all the unit tests there may be a problem.

One of the purposes of unit tests is to get quick feedback once changes are made.
Whilst a developer may run a subset of tests, as a general rule the entire suite of
all unit tests should ideally execute in multiples of seconds rather than minutes. The
ideal maximum time will depend on the size and complexity of the code being tested.

Integration tests may rely on communication with out of process resources such as
the file system or a database. These types of tests will naturally run slower than unit
tests.

Independent and Isolated

Unit tests should be able to be executed in any order without affecting the test results.
A test should not rely on another test having previously been executed to set up some
state.

Clean Tests 79

Repeatable and Reliable

Tests should pass or fail consistently. If a test passes sometimes and fails sometimes
it is not repeatable and therefore not reliable. The results of tests should be able to
be relied upon, without having to second guess if they are working properly.

Valuable

Tests should provide some value. There is a cost to both create them and maintain
them over time. It seems like an obvious statement, but there is little value in testing
auto-implemented C# property setters and getters.

Resilient to Production Code Changes

Changes to production code usually require changes to the test code that runs
against it. It is a necessary and expected cost that test code must be changed
when the production code it directly tests is changed. Wherever possible, test code
should insulate itself from unnecessary changes due to unrelated/tangentially-related
changes in the production code.

The Three Logical Phases of Tests

A test can be thought of as 3 distinct phase, the Arrange phase, the Act phase, and
the Assert phase. Each phase has a specific responsibility as described below.

The Arrange Phase

In the Arrange phase, the starting state of the system under test (SUT) and the test
code itself is created. This could mean creating an instance of the SUT class and
setting properties to put it into a know starting state. In an integration test, the
Arrange phase could mean ensuring that expected files exist on the file system or
specific records exist in a database.

Clean Tests 80

The Act Phase

In the Act phase, the SUT is executed or exercised in a specific way to produce some
expected result or change in state.

The Assert Phase

The previous Act phase caused some change to happen. In the Assert phase this
expected change is tested to ensure it meets the expected outcome. If the expectation
meets the actual result then the test will pass, otherwise it will fail.

How Many Asserts?

A test could contain one or more asserts. The strict approach is that a test may only
have a single assert statement. While this a good starting point, it may make sense
to allow multiple assert statements in some tests.

If a test contains multiple asserts then it is important to ensure that all the asserts
relate to testing the same single behaviour/concept. If the asserts relate to differing
behaviours then it is a sign that the test may need to be split into multiple tests with
more highly related (or single) asserts.

Simplifying Arrange Phase code with
AutoFixture

AutoFixture is an open source library that allows anonymous test data values to be
generated. This anonymous test data are values that need to be populated for the test
to work but where the actual value itself is unimportant.

When combined with a testing framework such as xUnit.net, AutoFixture can greatly
reduce (or even eliminate) the Arrange phase.

The following code shows two “production” classes:

Clean Tests 81

public class Person

{

public string Name { get; set; }

}

public class PersonWriter

{

private readonly Person _person;

public PersonWriter(Person person)

{

_person = person;

}

public Person Person

{

get { return _person; }

}

public string Write()

{

return "The name of the person is " + Person.Name;

}

}

To test the PersonWriter.Write method the following simple test could be written
(using the xUnit.net testing framework):

Clean Tests 82

[Fact]

public void WithoutAutoFixture()

{

// Arrange phase

var person = new Person

{

Name = "Amrit"

};

var sut = new PersonWriter(person);

// Act phase

var result = sut.Write();

// Assert phase

Assert.Equal("The name of the person is Amrit", result);

}

Notice in this preceding test, a Person needs to be created (with a name) to be able
test the PersonWriter.

The test can be refactored to use AutoFixture to create a Person for us and
automatically set the Name property:

Clean Tests 83

[Fact]

public void WithAutoFixture()

{

// Arrange phase

var fixture = new Fixture();

// Create a Person with automatically created anon Name

var person = fixture.Create<Person>();

var sut = new PersonWriter(person);

// Act phase

var result = sut.Write();

// Assert phase

Assert.Equal("The name of the person is " + person.Name, result);

}

In the preceding test, the actual Name of the Person is irrelevant, it is now “anony-
mous”.

Combining AutoFixture with xUnit.net theories allow the test to be reduced further
as shown in the following test:

Clean Tests 84

[Theory]

[AutoData]

public void WithAutoData(PersonWriter sut)

{

// Arrange phase performed automatically for us

// Act phase

var result = sut.Write();

// Assert phase

Assert.Equal("The name of the person is " +

sut.Person.Name, result);

}

To learn more about AutoFixture, see the project site readme document¹³ or the
Author’s Pluralsight course¹⁴.

¹³https://github.com/AutoFixture/AutoFixture/blob/master/README.md
¹⁴http://bit.ly/psautofixture

https://github.com/AutoFixture/AutoFixture/blob/master/README.md
http://bit.ly/psautofixture
http://bit.ly/psautofixture
https://github.com/AutoFixture/AutoFixture/blob/master/README.md
http://bit.ly/psautofixture

Building On Clean Code
There are a number of useful principles that build on top of or compliment the other
Clean C# concepts covered in this book. These principles can further improve the
overall cleanliness of the codebase.

The Single Responsibility Principle (SRP)

This principle states than any given class should do one well-defined thing, and
only that one well-defined thing. Put another way, if a class has more than one
responsibility, it will have to change whenever any one of its many responsibilities
change. If there is more than one reason for a class to change, it is likely that the
Single Responsibility Principle has been violated.

As an example, consider an OrderManager class that is responsible for: calculating
the total order amount, debiting a credit card, and updating the order status in the
database. This is a violation of the Single Responsibility Principle. Instead, a cleaner
implementation could be to split out each responsibility into three separate classes:
OrderTotalsCalculator, CreditCardCharger, and OrderRepository. Now each class
only needs to change if its responsibility changes.

Some of the benefits of adhering to SRP include:

• Classes only need to be changed when the “thing” that they are responsible for
change

• Classes have fewer lines of more highly-related code, making it easier for a
developers to understand them

• More individual source code files (one for each class) could result in fewermerge
conflicts in larger teams

• Classes may be more easily testable

Building On Clean Code 86

The Open Closed Principle (OCP)

The Open Closed Principle states that a class should be open for extension, but closed
for modification.

This means that it should be possible to add or change some behaviour without
modifying the existing class. For example, the OrderCalculator class should be able
to be extended to handle VIP customers who may get a discount or other preferential
treatment. In this example the CalculateOrderLinemethod could be overridden in a
derived VipOrderCalculator class. (Note: it could be argued here that to satisfy the
SRP the OrderLine should be in its own class).

The primary benefit of adhering to OCP is the potential reduction in code defects
because existing code that is currently in use is not being changed.

The Liskov Substitution Principle (LSP)

The Liskov Substitution Principle means that calling code should be able to use an
instance of a base class or an instance of a derived class without knowing it, or having
to do anything special.

A square is not a rectangle. This is the canonical example used to explain the Liskov
Substitution Principle. A square only has one value for the length of a side, whereas
a rectangle has two. To calculate the area of a square, we only need to multiply the
length of a side by itself. A rectangle requires one side length to be multiplied by
the other. If we derived Square from Rectangle (or vice versa) how would a calling
client know if it needed to provide a width and height (in the case of rectangle) or
just a single side length in the case of a square.

In the case above, it is possible to introduce an abstraction in the form of an interface
IShape, that declares methods such as CalculateArea.

LSP can also help to identify where the OO model may be incorrect. For example, if
code starts to look like if (shape is Square) ... else if (shape is Rectangle)

..., it can be a “code smell” and the design evaluated against LSP.

Adhering to LSP can help to reduce complexity in calling code so that it can work
generically on any class or subclass without additional conditional code.

Building On Clean Code 87

The Interface Segregation Principle (ISP)

The Interface Segregation Principle is similar to the Single Responsibility Principle
but as applied to interfaces. It leads to the development of a greater number of more
highly cohesive interfaces, rather than fewer bigger, bloated ones. To put it another
way, the class implementing the interface should not have to implement lots of things
that it does not care about, it should only have to implement the things it needs.

Keep It Simple Stupid (KISS)

This principle suggests that code that is as simple as possible is better than code that
is more complex.

There is a balance between using all the language features and being self-disciplined
and writing what could be described as a less “elegant”, but more easily readable,
maintainable code. For example, LINQ (Language Integrated Query) to objects can
greatly simplify code, but a three page LINQ-to-SQL statement works against the
goal of simplicity.

Another way to think about KISS is to ask: “is this code likely to be easily
repairable by an average programmer working under pressure during a production
defect/outage?”

The full power of language and tooling should absolutely be used where appropriate,
but when choosing between two possible implementations (all other things being
equal) KISS suggests that the simplest solution should usually be chosen.

Don’t Repeat Yourself (DRY)

DRY is sometimes referred to as the “Single Source of Truth” or “Once and Only
Once”.

At a basic level, DRY can be described as not doing copy-and-paste coding. There
are plenty of legacy codebases existing today where lines of code, whole methods,
classes, or even whole projects are duplicated by copy and pasting.

Building On Clean Code 88

There is a more subtle meaning to the DRY principle: “every piece of knowledge must
have a single, unambiguous, authoritative representation within a system” [Hunt, A
& Thomas, D. (1999) The Pragmatic Programmer: From Journeyman to Master]

This means that any given concept or abstraction that the code embodies should be
defined only once, in one place, and should be clear to the reader/maintainer.

DRY can also apply to things such as configuration files; for example a 300 line
configuration file that has 5 copies, one for each deployment environment, but that
only contains a few lines difference could be considered a violation of the DRY
principle. Instead there could be only one copy that gets transformed to change the
relevant values for the different environments.

You Aren’t Gonna Need It (YAGNI)

This principle advocates for the resistance of the temptation to second-guess what
code might be needed at some future point and going and adding it now (“just in
case”), rather than adding it only when it is actually needed.

If the code is not needed to complete the current feature or bug fix then it should not
be added yet.

Violation of the YAGNI principle can result in:

• Bloated code: unused code exists now, and may never be removed
• Increased Cost: the unused code may still need testing and maintaining
• Slipped dates: the unused code takes time away from other features that may
impact overall delivery dates

• Waste: by the time the unused code is actually required, it may no longer be
valid if business requirements have changed in the meantime

	Table of Contents
	About The Author
	Other Leanpub Books by Jason Roberts
	Keeping Software Soft
	C# Tips

	Pluralsight Courses

	About this Book
	Introduction
	What is Clean C#?
	Why Clean C#?
	Using this Book
	Code Samples
	Order
	Prescriptive

	Clean C# is a Spectrum

	Comments
	Repeating What the Code Already Says
	Change Control Comments
	Comments as a Substitute for Self Documenting Code
	Commented-Out Code
	Pointless XML Documentation Comments
	Acceptable Use of Comments

	Naming Things
	Qualities of Clean Names
	Expressive
	Accurate
	Suitable Length
	Pronounceable Names

	Naming Specific Items
	Namespaces
	Interfaces
	Classes
	Methods
	Properties
	Events
	Fields
	Attributes
	Method Parameters
	Variables
	Booleans
	Generic Types Parameters
	Enums

	Some General Rules

	Methods
	Method Size and Clarity
	Cohesive Methods
	Mixing Abstraction Levels
	Action or Answering Methods
	Method Parameters
	Methods with Zero Parameters
	Methods with One Parameter
	Methods with Two Parameters
	Methods with Three Parameters
	Methods with More Than Three Parameters
	Refactoring to Reduce the Number of Parameters
	Params
	Output Parameters
	Named Arguments
	Boolean Switching Arguments

	Multiple Returns
	Code Duplication in Methods
	Methods with Side Effects

	Structuring Programs for Readability
	Levels of Abstraction
	Method Level Abstractions

	Errors and Exceptions
	Returning Error Codes
	Using Exceptions
	Supplied Framework Exceptions
	Defining Custom Exceptions

	Alternatives to Error Codes, Exceptions, and Returning Nulls
	Try Methods
	Special Case Design Pattern

	Visual Formatting
	The Principle of Proximity
	The Principal of Similarity
	The Principal of Uniform Connectedness
	The Principal of Symmetry

	Cohesion and Coupling
	Cohesion
	Coupling

	Clean Tests
	Qualities of Good Test
	Execution Speed
	Independent and Isolated
	Repeatable and Reliable
	Valuable
	Resilient to Production Code Changes

	The Three Logical Phases of Tests
	The Arrange Phase
	The Act Phase
	The Assert Phase

	How Many Asserts?
	Simplifying Arrange Phase code with AutoFixture

	Building On Clean Code
	The Single Responsibility Principle (SRP)
	The Open Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	The Interface Segregation Principle (ISP)
	Keep It Simple Stupid (KISS)
	Don't Repeat Yourself (DRY)
	You Aren't Gonna Need It (YAGNI)

